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1 Introduction to Empirical Process Theory

1.1 Convergence of CDFs and the Glivenko-Cantelli theorem

Let (Xi)i∈[n]
iid∼ X. X has CDF F (t), i.e.

F (t) = P(X ≤ t).

We can also define the empirical CDF

F̂n(t) =
1

n

n∑
i=1

1{Xi≤t}.

This is the CDF of the empirical distribution of the Xi.
For any fixed t, the strong law of large numbers tells us that

lim
n→∞

F̂n(t) = F (t) a.s.

If we are more ambitious, we may want convergence of functions. In this case, we look at
the maximum difference,

‖Fn − F‖∞ := sup
t∈[0,1]

|F̂n(t)− F (t)|.

Here is a picture from Wainwright’s book illustrating convergence of the empirical CDF to
the uniform distribution on [0, 1].
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Why is convergence of the supremum norm stronger than pointwise convergence? In gen-
eral,

lim
n→∞

Gn(t) = G(t) ∀t���=⇒ lim
n→∞

sup
t
|Gn(t)−G(t)| = 0.

Example 1.1. Take Gn(t) = 1{t≤1/n}.

Then for any t > 0,Gn(t)→ 0, but limn→∞ supt |Gn(t)−G(t)| =∞.

A classical result guarantees uniform convergence of the empirical CDF.

Theorem 1.1 (Glivenko-Cantelli, 1933). Let Xi
iid∼ X, where F (t) is the CDF of X. Then

lim
n→∞

‖F̂n − F‖∞ = 0 a.s.

We will not prove this result. Instead, we will use empirical process theory, combined
with concentration results to show something stronger:

P

(
‖F̂n − F‖∞ ≥ 8

√
log(n+ 1)

n
+ t

)
≤ exp

(
−nt

2

2

)
.

In other words,

‖F̂n − F‖∞ ≤ 8

√
log(n+ 1)

n
+

√
log(1/δ)

2n
with probability 1− δ.

Why is this result stronger? If we let n → ∞, we get convergence in probability. We can
get a.s. convergence using the Borel-Cantelli lemma.

1.2 Uniform laws for more general function classes

Suppose (Xi)i∈[n]
iid∼ X ∼ P, and suppose we have a function class F ⊆ {f : X → R :

E[|f(X)|] <∞}.

Definition 1.1. The empirical process indexed by F is{
√
n

(
1

n

n∑
i=1

f(Xi)− E[f(X)]

)
: f ∈ F

}
.
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Define

‖Pn − P‖F := sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

f(Xi)− E[f(X)]

∣∣∣∣∣ .
Here, Pn = 1

n

∑n
i=1 δXi is the empirical measure. This is the object we will study for

the next portion of the course. If there is only 1 function f , we can deal with this using
the law of large numbers and concentration inequalities. We will learn how to deal with
this object using empirical process theory.

Why do we care about the maximum of empirical process in statistics and machine
learning? Recall the following setup:

Data distribution (Xi)i∈[n]
iid∼ P

Loss function L : X ×Θ→ R
Empirical risk R̂(θ) = 1

n

∑n
i=1 `(Xi; θ)

Population risk R(θ) = EX∼P[`(X; θ)]

Empirical risk minimizer θ̂ = arg minθ R̂(θ)

Population risk minimizer θ∗ = arg minθ R(θ)

Excess risk E = R(θ̂)−R(θ∗)

We train θ̂ on the empirical risk, so we want the empirical risk to be close to the population
risk. So to make sure training on our training data is accurate, we want to make the excess
risk small. The excess risk has the following decomposition:

E = (R(θ̂)− R̂n(θ̂))︸ ︷︷ ︸
Gap

+ (R̂n(θ̂)− R̂n(θ∗))︸ ︷︷ ︸
≤0

+ (R̂n(θ∗)−R(θ∗))︸ ︷︷ ︸
bound using Hoeffding

The Gap is

Gap =
1

n

n∑
i=1

E[`(X; θ̂)− `(Xi; θ̂)].
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We cannot use the strong law of large numbers to examine this because the `(Xi; θ̂) are
not independent random variables. We can fix this by replacing θ̂ by the sup over θ:

≤ sup
θ

∣∣∣∣∣ 1n
n∑
i=1

E[`(X; θ)− `(Xi; θ)]

∣∣∣∣∣ .
Here, f(X) = `(X; θ), so we want to look at the function class F = {`(·; θ) : θ ∈ Θ}.

Definition 1.2. We say that F is a Glivenko-Cantelli class for P if

‖Pn − P‖F := sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

f(Xi)− E[f(X)]

∣∣∣∣∣ p−→ 0.

Example 1.2. The Glivenko-Cantelli theorem says that F1 = {1{x≤t}}t∈R is a Glivenko-
Cantelli class for any P ∈ P(R).

Example 1.3. Consider F2 = {1S : S ⊆ [0, 1] is a finite set}, and assume that P has
density. This function class is not a Glivenko-Cantelli class. First note that F1 ⊆ F2, so
if F2 is GC, then F1 is GC. So large function classes are less likely to be GC. To show
that the function class is not GC, we can find a function in the function class which makes
these two quantites different. Pick S = {Xi : i ∈ [n]}, so

sup
S finite

∣∣∣∣∣ 1n
n∑
i=1

1{Xi∈S} − E[1{Xi∈S}]

∣∣∣∣∣ ≥ |1− 0|.

This lower bound holds for every n, so this difference will never go to 0.

Our next goal is to study some methods for upper/lower bounding ‖Pn−P‖F . We will
see

• Rademacher complexity and VC dimension (chapter 4 of Wainwright’s book),

• Metric entropy method and chaining (chapter 5 of Wainwright’s book).

1.3 Rademacher complexity

Recall that the Rademacher complexity of a set A ⊆ Rn is

R(A) := E
ε
iid∼Unif({±1})

{
sup
a∈A
〈a, ε〉

}
Definition 1.3. Given a function class F and a fixed data set (xi)i∈[n] ⊆ X , let

F(x1:n) := {(f(x1), . . . , f(xn)) : f ∈ F} ⊆ Rn.

The Rademacher complexity of the function class F and the data set (xi)i∈[n] is

R(F(x1:n)/n) := E
ε
iid∼Unif({±1})

{
sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

εif(Xi)

∣∣∣∣∣
}
.
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If we write A = ±F(x1:n)/n, then we can relate Rademacher complexity of sets and
function classes by

R̃(A) = R(F(x1:n)/n),

where R̃ denotes the Rademacher complexity of a set.

Definition 1.4. Given a function class F and a distribution P ∈ P(X ), let (Xi)i∈[n]
iid∼ P.

The Rademacher complexity of the function class F is

R(F) := E
Xi

iid∼P
[R(F(X1:n)/n)].

First, observe that if F1 ⊆ F2, then Rn(F1) ≤ Rn(F2), so this is a measure of the size
of a function class.

Example 1.4. Consider comparing two function classes:

The notion of Rademacher complexity measures how well functions in the function class
can align with Rademacher noise.

Here is the picture of what the comparison would look like:
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Example 1.5. Let ψ : Rd → Rp be a fixed feature map, and consider the function class

F = {f(x) = 〈ψ(x), θ〉 : ‖θ‖2 ≤ B}.

Then the Rachemacher complexity of this function class is

Rn(F) = EXi,εi

[
sup
‖θ‖2≤B

∣∣∣∣∣ 1n
n∑
i=1

εi〈ψ(Xi), θ〉

∣∣∣∣∣
]

= EXi,εi

[
sup
‖θ‖2≤B

∣∣∣∣∣εi〈 1n
n∑
i=1

ψ(Xi), θ〉

∣∣∣∣∣
]

= EXi,εi

[∥∥∥∥∥ 1

n

n∑
i=1

εiψ(Xi)

∥∥∥∥∥
2

]
·B

Using Cauchy-Schwarz,

≤ EXi,εi

∥∥∥∥∥ 1

n

n∑
i=1

εiψ(Xi)

∥∥∥∥∥
2

2

1/2

·B

= EXi,εi

[
1

n2

n∑
i=1

ε2
i ‖ψ(Xi)‖22

]1/2

·B

=
B√
n
E[‖ψ(X)‖22]1/2.

Why introduce Rademacher complexity?

1. We will show that
‖Pn − P‖F ≈ Rn(F).

2. The Rademacher complexity is easier to upper bound. We will have tools to upper
bound it, such as

• contraction inequality,

• VC dimension,

• fat-shattering dimension.

1.4 An upper bound of ‖Pn − P‖F via Rn(F)

Proposition 1.1. For any function class F and distribution P,

E[‖Pn − P‖F ] ≤ 2Rn(F).
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Proof. Let Yi
iid∼ Xi be independent of Xi. Then

E[‖Pn − P‖F ] = E

[
sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

f(Xi)− E[f(Xi)]

∣∣∣∣∣
]

= EX1:n

[
sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

f(Xi)− EY1:n [f(Yi)]

∣∣∣∣∣
]

≤ EX1:n,Y1:n

[
sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

(f(Xi)− f(Yi))

∣∣∣∣∣
]

We can introduce a Rademacher random variable without changing the distribution.

= EX1:n,Y1:n,ε1:n

[
sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

εi(f(Xi)− f(Yi))

∣∣∣∣∣
]

≤ EX1:n,Y1:n,ε1:n

[
sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

εif(Xi)

∣∣∣∣∣−
∣∣∣∣∣ 1n

n∑
i=1

εif(Yi))

∣∣∣∣∣
]

≤ 2Rn(F).

Next lecture, we will use a similar argument to show that if F = {f − E[f ] : f ∈ F},
then

Rn(F) ≤ 2E[‖Pn − P‖F ].
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